(1) Number, operation, and quantitative reasoning. The student uses numbers to name quantities. The student is expected to:

(A) use one-to-one correspondence and language such as more than, same number as, or two less than to describe relative sizes of sets of concrete objects;

(B) use sets of concrete objects to represent quantities given in verbal or written form (through 20); and

(C) use numbers to describe how many objects are in a set (through 20) using verbal and symbolic descriptions.

(2) Number, operation, and quantitative reasoning. The student describes order of events or objects. The student is expected to:

(A) use language such as before or after to describe relative position in a sequence of events or objects; and

(B) name the ordinal positions in a sequence such as first, second, third, etc.

(3) Number, operation, and quantitative reasoning. The student recognizes that there are quantities less than a whole. The student is expected to:

(A) share a whole by separating it into two equal parts; and

(B) explain why a given part is half of the whole.

(4) Number, operation, and quantitative reasoning. The student models addition (joining) and subtraction (separating). The student is expected to model and create addition and subtraction problems in real situations with concrete objects.

(A) use one-to-one correspondence and language such as more than, same number as, or two less than to describe relative sizes of sets of concrete objects;

(B) use sets of concrete objects to represent quantities given in verbal or written form (through 20); and

(C) use numbers to describe how many objects are in a set (through 20) using verbal and symbolic descriptions.

(2) Number, operation, and quantitative reasoning. The student describes order of events or objects. The student is expected to:

(A) use language such as before or after to describe relative position in a sequence of events or objects; and

(B) name the ordinal positions in a sequence such as first, second, third, etc.

(3) Number, operation, and quantitative reasoning. The student recognizes that there are quantities less than a whole. The student is expected to:

(A) share a whole by separating it into two equal parts; and

(B) explain why a given part is half of the whole.

(4) Number, operation, and quantitative reasoning. The student models addition (joining) and subtraction (separating). The student is expected to model and create addition and subtraction problems in real situations with concrete objects.